

So You Want a Dancing Duck.

- A quick and effective way to animate many characters with a many motions
- An overview of the process includes:
 - Gather model and motion
 - Match model and motion poses
 - Bind the model to the motion
 - Tweak the results using constraint-based motion editing techniques

Start With a Model.

- · Off the web
- · Created from scratch
- Must be able to bind to a hierarchical motion skeleton

(Ant model courtesy Hou Soon Mine

Grab a Motion.

- Off the web
- · Freshly captured
- From company moCap archives
- Must be hierarchical and humanoid in nature

Size up the Situation.

 Our chosen character size and motion size are clearly different

Resize the Mesh?

- · Simple to do
- If limb proportions differ, this leads to distortion

•	

Resize the Motion.

- Simple measurements lead to bonelength changes
- · Leads to a few problems

Wow! Done Already?

- The resized motion looks good, right?
- But wait, no poses in the motion match the character's pose...

Assigning Motion to the Model.

- Could take arbitrary motion pose and rotate it into model's pose
- Could build a skeleton for the model from scratch with matching bone lengths

Rotating Skeleton Into Place?

- · Tedious process
- Difficult to get certain rotations correct (wrist, shoulders, etc)

Building Skeleton From Scratch?

- Appears to be very easy
- The joint coordinate systems may not match

Coordinate System Overview.

- Due to capture process and/or file format specifications, motions may have joint coordinate systems oriented in different directions
- This is best shown with examples

Shoulder Example 2. • In this case, a 90 degree rotation around the X axis yields the same result as before:

So...

- Though the previous skeletons looked identical, their rotation data was very different
- When building a skeleton from scratch, coordinate systems of the new skeleton must match the motion's
- Very difficult to accomplish

Our Approach.

- Instead of a skeleton, create a point cloud of joints in the mesh
- · Trivial for the user
- Works with nearly any 3d modeling package out there

Our Approach - Prepare Motion.

- Need to pose the motion in a way which allows intuitive adjustments to match model's bind pose
- Zombie (or Frankenstein) pose

Rotate the Motion's Skeleton.

- Rotate each bone in the motion to match model point cloud information
- Relies heavily on knowledge of humanoid kinematics
- · Maintains coordinate systems

Gotcha's With Our Approach.

- Heuristic relies on humanoid motion simplification
- Point cloud insufficient to convey all joint orientations
- If motion is not humanoid, humanoid kinematics do not apply

Humanoid Motion Simplification.

- People's joints move in very complex ways
- Example: shoulder/elbow rotation

Motion Simplification Contd.

- When rotating shoulder into position, it is very difficult to take all rotational degrees of freedom into account
- We only allow for rotation around two axes

-	

Non-Humanoid Motion.

 Unless you know at least some of the complexities behind the creature's degrees of freedom, all bets are off

Finally We Can Bind!

- Despite all the gotcha's, our technique still works quite well
- With our matching skeletons, any bone-based hierarchical skinning technique can be applied

Now Are We Done?

- · Most certainly not!
- The model is not interacting with its environment as it should
- · Its feet are nowhere near the ground

-		

A Simple Transformation Fix?

- Model's root is still following old root translations
- A simple translation to the floor will yield sliding feet and too much bounce

How Do We Fix This Mess?

Constraint-based motion editing to the rescue!

Constraints – What Are They?

- A place in the motion where some relation must be true
- Please Refer to Dr. Michael Gleicher's SIGGRAPH 1998 entitled Retargeting Motion to New Characters as well as the numerous others located in our bibliography

Constraints and Our Example.

- In our case, adding constraints where the motion's feet hit the floor would probably be sufficient
- As seen before, our new mesh is clearly not satisfying its foot-hits-floor constraints

Solving for the Constraints.

 A quick solve for the constraints yields our model walking nicely along the floor

Tweaking Our Solution.

- Constraint-based motion editing is an interactive and iterative process
- Though constraints are met, motion may not be as we would like
- Further tweaking can be done

Moving Constraints.

 Moving/scaling constraints to different positions may be more desirable

Summary.

- · Our approach from an artist's view :
 - Find any model and motion
 - Create a point cloud for the model (adding an extra point for the hands)
 - Run our pose-equating process
 - Create reasonable constraints
 - Run our constraint-solver
 - Tweak constraints until satisfied

Advantages of Our Approach.

- Coding the pose-matching portion is straightforward
- Robustness it works with nearly every humanoid motion
- Reuse it can breathe new life into old motions
- Speed once system is in place, many motions can be retargeted quickly

Disadvantages of Our Approach.

- Coding an effective constraint-solver is very difficult
- Knowledge of motion's kinematics must be mastered before posematching can be universally effective

Special Thanks To...

- Alias|Wavefront
- ViewPoint
- Discreet
- Mainframe Entertainment
- Hou Soon Ming (http://www.its-ming.com)

...and the UW Madison Graphics Group.

Oh, and About That Duck...

Didn't we want a dancing duck out of the deal?